回溯的基本原理:
在问题的解空间中,按深度优先遍历策略,从根节点出发搜索解空间树。算法搜索至解空间的任意一个节点时,先判断该节点是否包含问题的解。如果肯定不包含,跳过对以该节点为根的子树的搜索,逐层向其祖先节点回溯,否则进入该子树,继续深度优先搜索。
回溯法解问题的所有解时,必须回溯到根节点,且根节点的所有子树都被搜索后才结束。回溯法解问题的一个解时,只要搜索到问题的一个解就可结束。
回溯的基本步骤:
1.定义问题的解空间
2.确定易于搜索的解空间结构
3.以深度优先搜索的策略搜索解空间,并在搜索过程中用剪枝函数避免无效搜索
典型的解空间:
1.子集树:从n个元素的集合S中找到S满足某种性质的子集,解空间是二叉树结构
2.排列树:确定n个元素满足某种性质的排列,解空间是n叉树
提高回溯法的效率:
1.约束函数:减去不满足约束的子树
2.限界函数:剪去得不到最优解的子树
回溯的基本结构:递归、非递归迭代
回溯的基本框架:
1.回溯法搜索子集树
void backtrack(int i){
{
if(i > n) output(x);